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ABSTRACT

In this paper a framework for objective quality prediction of
video with unknown content is proposed. The framework
consists of a general model for quality prediction together
with a strategy to find optimal model parameters. The core
of this strategy is a new error measure taking into account
important requirements in the context of quality prediction.
It is explained why standard least-square methods for model
parameter estimation are not suitable.
An application to the estimation of quality of video sequences
with different compression and transmission errors shows
that the optimisation strategy overcomes the shortcomings of
least-square methods.

Index Terms— video signal processing, optimization
methods, quality control

1. INTRODUCTION

For many applications quality estimation of video sequences
is indispensable. But the amount of data is often far too big
to test quality by subjective viewing. In addition, operators
testing the quality of their network often do not have con-
trol of the content of the transmitted video, e.g. in television
broadcasting. Therefore, quality has to be estimated without
knowledge of the video content. Todays quality estimation
methods usually perform this task by detecting known and ex-
pected degradations, [1]. Types of degradations are for exam-
ple blockiness as a result of a compression with a block-based
codec. Codecs like ITU-T H.264 try to hide blockiness degra-
dations by applying a smoothing filter on the decoder side,
which can result in a blurriness degradation instead. There
are degradations of temporal type, for example jerkiness, re-
sulting from delays in the transmission of packets over the
network, or frame rate reductions.

Recall some basic notions: Overall video quality is mea-
sured using a mean opinion score (MOS). In a subjective test,
subjects view video sequences sequentially, and rate their
quality usually between [1, 5], where 1 ≡ bad, 2 ≡ poor,
3 ≡ average, 4 ≡ good, 5 ≡ excellent, see [2]. For each
video sequence its MOS is the average rating given by the

subjects. The goal is to estimate the MOS, the estimate is
called the predicted score.

The paper is organised as follows: The next section ex-
plains the framework. In section 3 estimation of model pa-
rameters is discussed. Finally, after a toy example in section
4 explaining the ideas, the framework is applied to the predic-
tion of video quality in section 5.

2. FRAMEWORK

To predict the score of a video sequence v a set of real val-
ued functions (fk)k=1,..,m is used, the set of features. Let
xk = fk(v) denote the measured value of feature fk in se-
quence v. Example of a feature: count the number of times
the difference between two subsequent frames is 0, i.e. count
the number of repeated frames.
The predicted score spred is a function Φ of the feature values,
called the model,

spred(v) = Φ(f1(v), ..., fm(v)).

An example of the model Φ is a linear function of the mea-
sured feature values xk.

Realistic assumption:

1. The extracted features f1, ..., fm are content depen-
dent.

2. They do not allow to detect all types of degradations.

Assumption 1, content dependency, means that two video
sequences of different content showing the same type of
degradation at the same perceived strength do not have the
same measured feature values. As an example think of a fea-
ture detecting blockiness. Two video sequences compressed
with the same codec could have the same visually perceived
blockiness, but the measured value of the blockiness feature
would be different.

An example of assumption 2 is the following: Suppose
a video sequence is encoded and transmitted over a network.
During transmission some parts of a frame are lost. The de-
coder has different error concealment strategies. One could
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Fig. 1. Scatterplot of the target values of the toy data against
the estimated values (◦). Estimation is performed using a least
square procedure. The line shows the identity function.

be to freeze the previous frames during the loss period, an-
other could be to fill up only the lost parts of the frame with
neighbouring information. The two strategies will result in
very different types of degradations. One of the features could
be tuned to detect packet loss by detecting freezing periods.
Thus, the second type of degradation could not be detected.

Despite these assumptions, scores should be predicted
such that the following conditions are met:

Conditions:

1. Good overall/average prediction.

2. High quality sequences should be above 4 (≡ good)

3. Possibility for confident interpretation of single sample
prediction.

4. Possibility for future extension of the model by adding
features.

The standard way to proceed is the following: Choose
a model Φ depending on parameters and use a least-square
procedure to estimate model parameters. Then, condition 1
could be met. But under assumptions 1,2 the conditions 2, 3
will probably fail to be met. The reason is best seen in the toy
example in section 4 below, and the corresponding figure 1.

Note that poor predictions resulting from assumption 1
can be avoided by considering condition averages, by pre-
dicting the average MOS of all video sequences of the same
condition.

3. MODEL ESTIMATION

This section describes how model parameters can be esti-
mated, such that the conditions 1-4 are met. The idea is to
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Fig. 2. Scatterplot of the target values of the toy data against
the estimated values (◦). Estimation is performed using a non-
symmetric ε-insensitive loss function, compare with figure 1.
The line shows the identity function.

define a suitable error measure, often called loss function. We
propose a loss function of the form

Floss(x) =

⎧⎨
⎩

1
ε2 (x− ε)2 (x > ε)
−(x + ε) (x < −ε)
0 otherwise,

(1)

where the parameter ε is a small constant. The loss function
is non-symmetric and ε-insensitive, see [3] for extensive use
of ε-insensitive loss functions for regression.

Suppose the model Φ depends on parameters c = (c1, ..., cp).
Optimise the parameters c1, ..., cp by minimising the empiri-
cal error, i.e. the total loss of the data samples (vi),

minimise
n∑

i=1

Floss(yi − spred,c(vi)), (2)

where yi is the target value, the MOS, and spred,c(vi) is
the predicted score. Note that the index c of the predicted
score expresses the dependency on the parameters c. As the
loss function is ε-insensitive, prediction errors smaller than
ε do not contribute to the empirical error. Furthermore, the
loss function is quadratic for values larger than ε, but linear
for values smaller than −ε. Therefore, large underestimates
contribute stronger to the empirical error than large overesti-
mates.

Note that care has to be taken by choosing the model Φ as
minimising the empirical error might lead to overfitting [3].

The optimisation is performed using a stochastic gradient
descent: At each iteration t there is an estimate ct of the opti-
mal parameters. Then, a sample video vt is drawn, and based
on this sample the empirical error is estimated as

Eemp,t = Floss(yt − spred,ct
(vt)),
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Fig. 3. Scatterplot of the target values against the estimated
values (◦). Estimation is performed using a a non-symmetric
ε-insensitive loss function. The line shows the identity func-
tion, the dotted lines sit at a distance of ε.

where yt denotes the MOS of sample vt. Update the estimate
of ct by gradient descent

ct+1 ←− ct − η∂c(Eemp,t),

where the constant η << 1 is the learning rate. Iterate these
steps until convergence. The reader is referred to [4] for more
details.

4. TOY EXAMPLE

In this section the framework is applied to toy data as an il-
lustration. Consider the following toy example: the model is
a linear prediction of the score based on one feature f . MOS
values (yi) and measured values (xi) corresponding to the
feature f are generated artificially in the following way: Sup-
pose there are two types of degradations. First, one that is
detected by feature f and second, one that is not.

For the first type of degradation the MOS values (yi) are
sampled from a uniform distribution in [1, 5]. The measured
values (xi) equal to the target values up to Gaussian noise σ,
xi = yi + σ.

For the second type of degradation the MOS values (yi)
are sampled from a normal distribution with mean 1.7. The
measured values are given by normal samples around the
value 4. The interpretation is that the feature can almost not
detect this type of degradation.

First, for comparison, model parameters are estimated us-
ing a least-square fit. The result is shown in figure 1. Second,
the model parameters are estimated by using loss function (1),
and minimising the empirical error (2). The result is shown in
figure 2.
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Fig. 4. Score prediction: distribution of residual errors of
condition averages. The dotted lines show the value of the
insensitivity parameter ε.

The main differences between the two results are, first, the
estimates using least-square fit span a considerably smaller
range. Samples with a MOS score above 4 fall between 3 and
4. On the other hand, our proposed method produces esti-
mates, which are close to the target value for samples belong-
ing to the first type of degradation. Samples with a high target
value have a high estimated value. Second, with the proposed
method large residuals are always overestimates, contrary to
the least-square fit. Therefore, looking at the estimated score
of a single sample there is a high confidence that the MOS
value is not much larger than the estimate.

5. VIDEO QUALITY ESTIMATION

In this section the framework is applied to the prediction of
the quality of video sequences in the following database:

5.1. Database of video sequences

A database consisting of 15 source video sequences of QCIF
format of 10 seconds length, and 281 processed samples is
used. Different conditions were defined to generate from the
15 source sequences the processed sequences. The condi-
tions were freezing, performing frame rate reduction, encod-
ing/decoding the sequences with either of a h263, h263+,
h264 encoder/decoder, by blurring the frames, by simulating
packet loss, or by a combination of these. For each condition
at least 5 samples of different content were generated. All
the video sequences were rated by 12 experts and averaged to
yield the mean opinion scores (MOS).

5.2. Features and result

There are two features: one is a temporal feature measuring
the jerkiness of a video sequence. Here, freezing is inter-
preted as a strong jerkiness. It is mainly a temporal feature.
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Fig. 5. Scatterplot of the target values against the estimated
values (◦) of the condition averages of the same model as in
figure 3. The line shows the identity function, the dotted lines
sit at a distance of ε.

The second feature is mainly spatial, composed of a blocki-
ness, a blurriness, and a packet loss measure. The features are
scaled to take values in [0, 1].

The model is a multiplicative model of the form

Φ(x1, x2) = τ(xc1
1 · xc2

2 ), (3)

where c1, c2 are the model parameters, and τ rescales the in-
terval [0, 1] linearly to the interval [1, 5]. Hence score predic-
tion takes the form

spred(v) = τ (f1(v)c1 · f2(v)c2) . (4)

A value of ε = 0.5 is chosen for the insensitive region of
the loss function (1). The estimation is performed in the log-
domain, where the model is linear. The estimated parameters
are c1 = 0.39, and c2 = 0.97. Figure 3 shows a scatterplot of
the mean opinion scores against the estimated scores. Recall
the desired conditions 1-4 of section 2. The correlation coeffi-
cient is 0.8, the model has a good overall performance, keep-
ing in mind that the model has only two parameters. For con-
dition averages, the correlation coefficient increases to 0.95.
The samples with MOS above 4 have a predicted score above
4, too, in accordance with condition 2. There are very few es-
timates lower than ε compared to the MOS value. Hence, for
each sample there is high confidence that the predicted score
is not more than ε below the MOS value, as desired by con-
dition 3. The last condition 4, extensibility, is discussed in
section 6.

Figure 4 shows the residual error distribution. Note that
the mean of the estimated scores is not equal to the mean of
the MOS scores.

Figure 5 shows the scatterplot of MOS values against pre-
dicted scores for condition averages. As a result of the strat-
egy to avoid estimates much smaller than the MOS value,
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Fig. 6. Score prediction: distribution of residual errors of
condition averages. The dotted lines show the value of the
insensitivity parameter ε.

samples with low MOS value are systematically somewhat
too high. Figure 6 shows the distribution of residuals. Resid-
ual errors are considerably smaller than in figure 4.

6. DISCUSSION

In this paper a framework for quality estimation of video with
unknown content is proposed. The advantage of this con-
cept with respect to the initial assumptions and conditions is
demonstrated on real world data. Of course, the framework
itself could be used for other similar problems like quality es-
timation of video with known content, prediction of audio or
audio-visual quality.

One possible advantage of our framework, which is not
tested in the current paper is extensibility. Suppose there
would be a type of degradation, not detected by our features.
Corresponding samples would be largely overestimated. If an
additional feature could be designed detecting only this type
of degradation, the model could be extended to include the
additional feature. Ideally, the extended model would give
similar predictions except for the before undetected type of
degraded samples, where performance could be improved.
Testing this idea is an open point for future work.
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